HELIIIITH

Instruction Manual

introduction

INTRODUCTION

Thank you for purchasing the B6SAC Balance Charger. This product is a rapid charger with a high performance microprocessor and specialized operating software. Please read this entire operating manual completely and attentively before using this product, as it covers a wide range of information on operating and safety. Or please do use this product in company
with a specialist! with a specialist!

Specifications

Operating voltage range:

Circuit power:
Charger current range
Discharger current range:
Current drain for balancing Li-po:
Li-ion/Polymer cell count:
Pb Battery voltage:
Weight:
Dimensions

DC11.0~18.0 Volt
AC in: $100 \mathrm{v} \sim 240 \mathrm{~V}$
$50 / 60 \mathrm{~Hz}$
Max. charge power 50W
Max. discharge power 5 W
$0.1 \mathrm{~A} \sim 5.0 \mathrm{~A}$
.1A~1.0A
$300 \mathrm{mAh} /$ cell
1~6 series
2 V ~20V
531 g (Net Weight)
122*132*35mm

Warranty and Service

We guarantee this product for one year warranty from the time of purchase if defects are caused by our manufacturing or assembly. During the period, we will repair it or replace one without charge for the one deemed defective due to above causes.

You will be required to provide a proof of purchase (invoice or receipt). This warranty is not valid for any damage or subsequent damage arising from misuse, modification or failure to follow the procedures outlined in this manual

WARNING AND ERROR INFORMATION

EATTERY GHECK HIGH UOLTAGE
EATTERY UOLTAGE CELL LOH UCL
EATTEFY UCLTAEE CELL HIEH WOL
EATTEFY MOLEFF CELL CONNECT
TEMP OUEF EfR
CONTROL FAILURE

The voltage is higher than which is set. Please check the number of cells in the battery pack.

Voltage of one cell in the battery pack is too low, please check the voltage of each cell.

Voltage of one cell in the battery pack is too low, please check the voltage of each cell.

Wrong connection of the connector detected; please check the connector and cable.

The internal temperature is too high, please cool down.

The processor cannot control the feeding current, please repair it.

SPEGIAL FEATURES

Optimized Operating sofftware

B6SAC features the so-called AUTO function that set the feeding current during the process of charging or discharging. Especially for Lithium atteries, it can prevent the overcharging which may lead to an explosion due to the user's fault. It can disconnect the circuit automatically and two way linkage and communication, to achieve the maximum safety and minimize the trouble. All the settings can be configured by users!

Internal independent lithium battery halancer

B6SAC employs an individual-cell-voltage balancer. It isn't necessary to connect an external balancer for balance charging.

Balancing individual cells hattery discharging

During the process of discharging, B6SAC can monitor and balance each cell of the battery individually. Error message will be indicated and the process will be ended automatically if the voltage of any single one cell is abnormal.

Adaptable to various types of lithium batteries

B6SAC is ada tabpe to variou

 new LiFe series of batteries
Fast and storage mode of lithium batteries.

Purposes to charge Lithium battery varies, 'fast' charge reduce the duration of charging, whereas 'store' state can control the final voltage of your battery, so as to store for a long time and protect useful time of the battery.

SPECIAL FEATURES

Maximum safety

Delta-peak sensitivity: The automatic charge termination program based on the principle of the Delta-peak voltage detection. When the battery's voltage exceeds the threshold, the process will be terminated automatically.

Automatic charging current limit

You can set up the upper limit of the charging current when charging your NiCd or NiMH battery it is useful for the NiMH battery of low impedance and capacity in the 'AUTO' charging mode.

capacity limit

The charging capacity is always calculated as the charging current multiplied by time. If the charging capacity exceeds the limit, the process will be terminated automatically when you set the maximum value.

Temperature threshold

The battery's internal chemical reaction will cause the temperature of the battery to rise. If the temperature limit is reached, the process will be terminated.
*This function is available by connecting optional temperature probe, which is not included in our package,

Processing time limit

You can also limit the maximum process time to avoid any possible defect.

Input power monitoring

To protect the car battery used as DC input power from being damaged, its voltage keeps being Monitored. If it drops below the lower limit, the process will be ended automatically

Date store/load

The maximum five batteries' date can be stored for user's convenience. You can keep the date pertaining to program setting of the battery of continuous charging or discharging. Users can call out these date at anytime without any special program setting.

WARNING AND ERROR INFORMATION

B6SAC incorporates a variety of functions for the systems to varify processes and the state of the electronics. In case of an error the screen will display the cause of error and emit an audible sound.

FEUERSE POLfRITY

CONNECTION EREFH

SHORT ERR

INFUT UOL EFF

yol select brif

EREAK DOHN

EATTEFY THEC

Incorrect polarity connected.

Battery connection is interrupted.

Short-circuit of the output termination.

of the battery pack

The voltage of the battery pack has been selected incorrectly!

The charger has malfunctioned for some reason. Seek professional advice

The voltage is lower than which is set. Please check the number of cells in the batter pack.

Cyclic charging/discharging

1 to 5 cyclic and continuous process of charge $>$ discharge or discharge $>$ charge is operable for battery refreshing and Balancing to stimulate the battery's activitly.

4DEC \downarrow
Copacity $\begin{aligned} & \text { Cut-Off } \\ & \text { Songmit }\end{aligned}$ «DEC \downarrow

Safety $\begin{aligned} & \text { Timer } \\ & \text { Zgarin }\end{aligned}$

 4DEC \downarrowUSE Term Enabled

3-pin connector is selected to be the USB port.
CDEC
Ent. Terip 2EC

The external temperature is displayed when the temperature probe is used.

4DEC \downarrow

IN Fouser Uoltase 12.560
Present input voltage
The battery is connected with each port through cable; you can check
4. 14.16 . 4.6 voltage of each cell in the battery pack. When the cable is connected
2. $\begin{aligned} & \text { with the ports on the right of the charger, the program will display voltage } \\ & \text { of up to } 6 \text { batteries. The battery pack needs an }\end{aligned}$ of up to 6 batteries. The battery pack needs an output connector connected with each cell.

LOAD DATA PROGRAM

This program is to load the data stored at the 'save data' program. Press START/ENTER key to make the data field blink and press INC or DEC for more than 3 seconds load the data

$\begin{array}{r}\text { FFIDERAM SELECT } \\ \text { LOAD } \\ \hline\end{array}$

LOAD [01] NilH Choose the data number you want to call back. The data you want to 14.40 sbebrinin call back will displayed.

	\checkmark Enter ${ }^{\text {c }}$ 3seco
Lond	

Loading the data

You can inquire various information on the LCD screen during the charging and discharging process. Press DEC key, the charger will display users' setting. You can press INC key to monitor voltage of each cell while the battery is connected with each port of the charger.

Scroll through the Main Menu Stop any charge processes

LCD screen

AC input power port
(AC 100-240V, $50 / 60$

Output charge lead 4 mm banana plug Balance lead socket ec Resume or start charge processes .Confirm an action
Alter values

Alter values
See the status of individual
cells in balance charge mode

DATA STORAGE PROGRAM

DATA STORAEE PROERAM

For your convenience, B6SAC has a date storage and load program. It can store five battery date representing the respective specifications of batteries. You can call back the data when charging or discharging without setting up the program again. Press START/ENTER key to make it blink, and use INC or DEC to set up the parameter

LITHUM POLYMER BALANCE CHARGE PROGRAM CONNECTION DIAGRAM

IITHUM POLYMER BALANEE CHARGE PROGRAM

CONHEGTION DIAGRAM

This diagram shows the correct way to connect your battery to the B6SAC charger while in the Balance charge program mode only.

\triangle WARNING:

Failure to connect will damage this charger. The right approach is as follows

*The main battery leads must be connected along with the balance lead connector as shown before charging your battery.

\triangle WARNING:

! If using crocodile clips shown in above diagram, make sure they are unable to touch Together!

WARNING AND SAFETY NOTES

4. WARNING AND SAFETY NOTES

These warnings and safety notes are particularly important. Please follow the instructions For maximum safety; Otherwise the charger and the battery can be damaged or at worst it can cause a fire.
(1) Never leave the charger unattended when it is connected to its power supply. If any malfunction is found, TERMINATE THE PROCESS AT ONCE and refer to the operation manual
(!) Keep the charger well away from dust, damp, rain, heat, direct sunshine and vibration Never drop it.
(!) The allowable input voltage is $11-18 \mathrm{~V}$ DC
(1) This charger and the battery should be put on a heat-resistant, noninflammable and nonconductive surface. Never place them on a car seat, carpet or similar. Keep all the inflammable volatile materials away from operating area
(1) Make sure you know the specifications of the battery to be charged or discharged to ensure it meets the requirements of this charger. If the program is set up incorrectly battery and charger may be damaged. It can cause per explosion due arising as a result of misuse of failure to observe the procedures outlined in this manual.

Charcing of the Ph Battery

dISCHARGING OF THE Pb BATtERY

CHARGE/DISCHARGE AND DISCHARGE/CHARGE CYCLE OF NiCd/NiMH BATTERY

CHARGE/DISGHARGE AND DISGHARGE/CHARGE GYCLE OF NIGI/NIMH BATTERY

NIMH

You can set up sequence on the left and the number of cycles on the right. You can balance, refresh and break-in the battery with this function. You can set a temporary cool-off procedure in the user's setting. Range of the cycle number is $1-5$.
$\xrightarrow[\substack{\text { Batt type } \\ \text { Stop }}]{\substack{\text { Start } \\ \text { Enter }}}{ }^{\text {St }}$ seconds

\checkmark	Pr
WIMH 1. 日月 7. प20 D>C 022: 45 (06BE	START/ENTER key to alter charge current. The sound indicates the end of program.

 Discharge
or charge
current

\section*{| ICHE | 1 | 1314 rafh |
| :--- | :--- | :--- |
| CHE | 1 | 14 Eminh |}

When it approaches to the end, you can see the capacity of the battery being charged or discharged. You can press INC or DEC key to display result of each cycle

PhILEAD-SULPHURIC ACID] BATTERY

This program is only suitable for charging Pb (lead-acid) battery with nominal voltage from 2 to 20V. Pb (lead-acid) battery is completely different from NiCd/NiMH battery. These batteries can only deliver current lower in comparison to their capacity. The same restriction applies to the charging process. Consequently, the optimum charge current can only be $1 / 10$ of the capacity. Pb battery can not be used for fast-charging, please follow the instructions provided by the You can press START/ENTER key to make it blink and alter the value of parameters using INC or DEC key, press START/ENTER key to store the value

NiCd/NiMH	Voltage level: $1.2 \mathrm{~V} /$ cell Allowable fast charge current: 1C-2C(depends on the performance of cell) Discharge voltage cut off level: $0.85 \mathrm{~V} /$ cell(NiCd), $1.0 \mathrm{~V} /$ cell(NiMH)
Li-ion	Voltage Level: $3.6 \mathrm{~V} /$ cell Max. charge voltage: $4.1 \mathrm{~V} /$ cell Allowable fast charge current: 1C or less Min. discharge voltage cut off level: $2.5 \mathrm{~V} / \mathrm{cell}$ or higher
LiPo	Voltage level: $3.7 \mathrm{~V} / \mathrm{cell}$ Max. charge voltage: $4.2 \mathrm{~V} / \mathrm{cell}$ Allowable fast charge current: 1C or less Discharge voltage cut off level: $3.0 \mathrm{~V} / \mathrm{cell}$ or higher
LiFe	Voltage level: $3.3 \mathrm{~V} /$ cell Max. charge voltage: $3.6 \mathrm{~V} /$ cell Allowable fast charge current: 4C or less Discharge voltage cut off level: $2.0 \mathrm{~V} / \mathrm{cell}$ or higher
Pb	Voltage level: $2.0 \mathrm{~V} / \mathrm{cell}$ (Lead-acid) Max. charge voltage: $2.46 \mathrm{~V} /$ cell Allowable fast charge current: 0.4 C or less Discharge voltage cut off level: $1.75 \mathrm{~V} /$ cell or higher

WARNING AND SAFETY NOTES

To avoid short circuit between the charge lead always connect the charge cable to the charger first, then connect the battery. Reverse the sequence when disconnecting.
(!) Do not connect more than one battery pack to this charger at any one time.
(!) Never attempt to charger or discharger the following types of batteries.

A battery pack which consists of different types of cells (including Different manufacturers)
A battery that is already fully charged or just slightly discharged.
Non-rechargeable batteries (Explosion hazard).
Batteries that require a different charge technique from NiCd, NiMh, LiPo or Gel cell(Pb, Lead acid).

A faulty or damaged battery
A battery fitted with an integral charge circuit or a protection circuit.
Batteries installed in a device or which are electrically linked to other components.

Batteries that are not expressly stated by the manufacturer to be suitable for the currents the charger delivers during the charge process.

The screen shows the real-time status. Press BATT TYPE/STOP key to end the program. The sound will emitted to indicates the end of program

dISCHARGE OF NIEA/NiMH Battery

NIMH DISCHFREE | Set charge current on the left and the final voltage on the right. Range |
| :--- |
| of the charge current is $0.1-1.0 \mathrm{~A}$; range of final voltage is $0.1-25.0 \mathrm{~V}$. |
| Press START/ENTER key for more than 3 seconds to start the |
| program. |

OITAGE BALANGING AND MONITORING IN THE DISCHARGE PROCESS

VOLTAGE BALANEING AND MONITORING IN THE DISEHAREE PROCESS

The processor monitors voltage of each cell when the battery packs are during its 'storage' and 'discharging' process. The achieve this feature, plug each battery to the charger individually. If voltage of if press INC to know which cell is damaged

EATTERY UOL ERFR	The processor detects voltage of one cell is too low.
\downarrow INC	
$4.14 \quad 4.15 \quad 4.69$ $2.18 \quad 0.060 .06$	The 4th cell was damaged. The value of voltage may be zero if disconnection occurs.

DISCHARGE OF NICD/NIMH BATTERY

WARNING AND SAFETY NOTES
(!) Please bear in mind the following points before commencing charging:

- Did you select the appropriate program suitable for the type of battery you are charging?
- Did you set up adequate current for charging or discharging?
- Have you checked the battery voltage? Lithium battery packs can be wired in parallel and in series, i.e. a 2 cells pack can be 3.7 V (in parallel) or 7.4 V (in series).
- Have you checked that all connections are firm and secure? Make sure there are no intermittent contacts at any points in the circuit.
(!) charging
During charge process, a specific quantity of electrical energy is fed into the battery. The charge quantity is calculated by multiplying charge current by charge time. The maximum permissible charge current varies depending on the battery type or it performance, and can be found in the information by the battery manufacturer. Only batteries that are expressly stated to be capable of quick-charge are allowed to be charged at rates higher than the standard charge current

Connect the battery to the terminal of the charger: red is positive and black is negative Due to The difference between resistance of cable and connector, the charger cannot detect Resistance of the battery pack, the essential requirement for the charger to work properly is that the charge lead should be of adequate conductor cross-section, and high quality connectors which are normally gold-plated should be fitted to both ends

Always refer to the manual by the battery manufacturer pertaining to charging methods, recommended charging current and charging time. Especially, the Lithium battery should be charged according the charging instruction provided by the manufacturer strictly
Attention should be paid to the connection of Lithium battery expecially
Do not attempt to disassemble the battery pack arbitrarily.
Please get highlighted that Lithium battery packs can be wired in parallel and in series. In the paralle connection, the battery's capacity is calculated by multiplying single battery's capacity by the number of cells with total voltage stay the same. The voltage's imbalance may cause fire or explosion. Lithium battery is recommended to charge in series.

Discharging:

The main purpose of discharging is to clean residual capacity of the battery, or to reduce the battery voltage to a defined level. The same attention should be paid to the discharging process as charging. The final discharge voltage should be set up correctly to avoid deep-discharging. Lithium battery can not be discharged to lower than the minimum voltage, or it will cause a rapid loss of capacity or a total failure. Generally, Lithium battery doesn't need to be discharged. Please pay attention to the minimum voltage of Lithium battery to protect the battery
Some rechargeable batteries have a memory effect. If they are partly used and echarged before the whole charge is accomplished, they remember this and will only use that part of their capacity next time. This is 'memory effect' It is said that NiCd and NiMH batteries are suffering from memory effect. NiCd has more memory effect than NiMH.

Lithium batteries are recommended to be discharged partially rather than fully discharged. Frequent ful discharging should be avoided if possible. Instead, charge the battery more often or use a battery of larger capacity. Full capacity cannot be used until it has been subjected to 10 or more charge cycles.

DISCHARGE OF LITHIUM BATTERY

At this screen, you can set up the current and voltage of the battery pack. Charging and discharging will make the batteries come to the voltage level of 'storage' state.

This screen shows the real-time status charging. Press BATT TYPE/STOP key once to stop the charge process

The value of discharge current on the left cannot exceed 1C, and the value on the right cannot be under the voltage recommended by the manufacturer to avoid deep discharging. Press STAR/ENTER for more than 3 seconds to start charging
his shows the real-time status of discharging, you can press BATT.TYPE/STOP key to stop discharging

FAST CHARGING OF LITHIUM BATTERY

FAST CHARAING OF LITHIUM BATTERY

Charging current will become lower when it progress to the end of charging. A specific CV process will be reduced to end the charging process earlier. In fact, the charging current will goes to $1 / 5$ when ittle smaller than normal charging, but charging time will be shortened accordingly.

You can set up the charging current and voltage of the battery pack. Press START/ENTTER key to display voltage confirmation. Then press START/ENTER key again to confirm and begin to charge.

This screen shows the real-time status of 'fast charging'. Press BATT TYPE/STOP key once to stop the charge process.
umber Elapse
$\mathrm{N}_{\mathrm{f}} \mathrm{Number}$ time
$\underset{\substack{\text { of } \\ \text { cells }}}{\substack{\text { Chars } \\ \text { curre }}}$

STORAGE CONTROL OF IITHUUM BATTERY

This function is for charging/discharging batteries which are not used at once. This program is designed for charging or discharging of batteries of specific original state. They are classified by types: 3.75 V Lilon, 3.85 V LiPo and 3.3 V LiFe . The program will begin to discharge if the original state of the battery exceeds the voltage level of storage

(1) Program flow chart

As default this charger will be set to typical user setting when it is connected a 12 V battery for the first time. The screen displays the following information in sequence and the user can charge the parameter on each screen.
you need to alter the parameter value in the program, press 'Start/Enter' key to make blink then change the value with 'INC' or 'DEC' key. The value will be stored by pressing Start/Enter' key once

CHARGING OF LITHIUM BATTERY

GHARANG OF LITHIUM BATTERY

\downarrow Start

Charging IIthium battery in the baiange mode

This function is for balancing the voltage of Lithium-polymer battery cells while charging. In the balance mode, the battery needs to have a balance lead to connect to the individual port at the right side of the charger. And you need to connect the battery \square s output plug to the output of charger.
Charging in this mode is different from the normal modes, because the built-in processor monitors voltage of individual cell and control input current fed into each cell to normalize the 17 voltage

The left side of the first line shows the type of battery you choose. The value on the left of the second line of the charger is current user set. After setting the current and voltage, press START/ENTER key for more than 3 seconds to start the process. (charge current: .1-5.0 A, voltage: $1-5 \mathrm{~V}$).

This displays the number of cells you set up and the processor detects. 'R' shows the number of cells detected by the charger and 'S' is the number of sells set by you and the previous scree both numbers are identical you can start charging by press back to previous screen to carefully check the number of cell f the battery pack before going ahead.

This screen show the real-time status during charge process Press BATT TYPE/STOP key once to stop the charge process
 The screen shows the nominal voltage of Lithium battery. There are three kinds of carefully to make sure it is set up correctly If it is different from correct value, explosion can occur during charge process.

To avoid from erroneous setting by users, B6SAC detects the cell count of Lithium battery automatically at the beginning of charge or discharge process. But battery that is deep-discharged can \square be detected correctly. To avoid this error, the time term can be set to verify the cell count by the processor. Normally, 15 seconds are enough to detect the cell count correctly. You need to extend the time term limit for the battery of large capacity. But the charge or discharge process may come to an end within the time term because of the time limit decided by the wrong count if you set too long time limit for the battery of small capacity. This may cause fatal error. You have to extend the time term if or discharge proces Otherwise, default value is recommended to use. or discharge process. Otherwise, default value is recommended to use.

This shows the trigger voltage for automatical charge termination of NiMH and NiCd battery. The valid value ranges from 5 to 20 mV per cell. Setting the trigger voltage higher brings a danger of overcharging; Please refer to the technical specification of the battery (NiCd default: 12 mV , NiMH defalt: 7 mV)

There is a 3-pin port on the left of the charger used as USB interface of temperature sensor port. If the screen displays temperature, you can use the optional temperature probe to connect to the surface of the battery. If it is set as the USB port, you can connect the charger to your PC through the optional USB cable to monitor the charging process through optional software
The maximum temperature of the battery can be set during the charge process. The process will be terminated automatically to protect battery once the temperature of battery reaches this value. This feature is accomplished through temperature probe (optional).

The battery becomes warm after cycles of charge/discharge process. The program will insert a time delay after each charge/discharge process to allow the battery enough time to cool down before beginning next cycle of charge/discharge process. The valid value ranges from 1to 60 minutes

When the charge process starts, the integrated safety timer starts to run simultaneously. If error detected or the termination circuit can not detect whethe he battery is fully charged or h . This unt is programmed to prevent overcharg ing. Please refer to the below statement to calculate the timer you set

The program provides maximum capacity protection function. If the Deltapeak voltage can not be detected or the safety timer times out, the charge process will stop automatically, when the battery reaches the user-set maximum charge capacity.

The beep to confirm users' operation sounds every time a button is pressed. The beep tor melody sounds at various times during operation to confirm different mode change. These functions can be switched on or off.

This function monitors the voltage of the input battery used to power this charger. the voltage is lower than user-set value, the program will end forcibly to protect the input battery.

SAFE TIMER CALCULATION

When charging NiCd or NiMH batteries, divide the capacity by current, then divide the result by 1.9, set this number of minutes as the value for safetl timer setting If the charger stopped at his time threshold, about 140% of the capacity will have been fed into the battery.
For example
Capacity Current Safety time
$2000 \mathrm{mAh} \quad 2.0 \mathrm{~A} \quad(2000 / 2.0=1000) / 11.9=84$ minutes
$\begin{array}{lll}2000 \mathrm{mAh} & 2.0 \mathrm{~A} & (2000 / 2.0=1000) / 11.9=84 \text { minutes } \\ 3300 \mathrm{mAh} & 3.0 \mathrm{~A} & (3300 / 3.0=1100) / 11.9=92 \text { minutes }\end{array}$
$1000 \mathrm{mAh} \quad 1.2 \mathrm{~A} \quad(1000 / 1.2=833) / 11.9=70$ minutes

Lithium [Lilo/Lipo/Life] prograil

The program is only suitable for charging/discharging Lithium-polymer batteries with a nomina voltage of $3.3 / 3.6 / 3.7 / \mathrm{cell}$. Different batteries have different charge technique. There are two methods termed as constant voltage and constant current. The charge current varies according me battery capacity and specification. The final voltage is very important; it should precisely to battery capacity and specification. The innal voltage is very important; it should precisely voltage of the battery should be correctly set.
When you want to change the values of parameters, please press START/ENTER key to make it blink and then use DES or INC to change the value. Then press START/ENTER key again to store the value.

